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N ..
"/ This paper presents an algorithm for analyzing a standard c‘gl/or image to determine intrinsic images “e
. of the amount of interface (‘%specular‘s)( and body (“ditfuse”) reflection at each pixel. The interface o
reflection represents the highlights from the original image, and the body reflection represents the
original image with highlights removed. Such intrinsic images are of interest because the geometric

properties of each type of reflection are simpler than the geometric properties of intensity in a black-
and-white image. .

The algorithm is based upon a physical model of reflection which states that two distinct types of
reflection -- interface and body reflection -- occur, and that each type can be decomposed into a
relative spectral distribution and a geometric scale factor. This model is far more general than typical -
models used in computer vision and computer graphics, and includes most such models as special S
cases. In addition, the model does not assume a point light source or uniform illumination
distribution over the scene.

The properties of spectral projection into color space are used to derive a new model of pixel-value

color distribution, and this model is exploited in an algorithm to derive the intrinsic images. "'“1
Suggestions are provided for extending the model to deal with diffuse illumination and for analyzing j.:ﬁ;_;
the intrinsic images of reflection. (/L da. /' rit Fijtw*“ D odachicmatic faflechion pigda( g
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1. Introduction

-

When we look around us, the surfaces we see are typically glossy. They may seem to be very shiny,
fairly matte, or anywhere in between, but virtually all the surfaces around us exhibit highlights to
varying degrees. These highlights are most pronounced when the surface normal bisects the angle
between the direction of illumination and the direction of view, making the position and intensity of
- highlights very sensitive to viewing geometry. This causes problems with many low-level computer
vision methods such as segmentation (which typically assumes uniform or smoothly varying intensity
= across a surface) or stereo and motion analysis (which attempt to match images taken from different __

S e

viewpoints).

- Highlights are not the only source of intensity variation across a surface. Even with uniform
,.. illumination of a matte, uniformly colored surface, there will be smooth shading due to the angle of
!" incidence of the incoming illumination relative to the surface normal. .-

it would be very useful to be able to separate the effects of shading from highlights. This might
result in intrinsic images telling, at each pixel, the intensity of the shading and the intensity of the
i highlight at that point. This separation was first suggested by Barrow and Tenenbaum [1], and would
: eftectively produce an image of the highlights, and an image with the highlights removed. These
would be useful for analysis since each of these phenomena is more simply related to the angles of
-. illumination and viewing than is their sum (which is measured in a black-and-white image). In
addition, the relative insensitivity of shading to viewpoint would make the shading intrinsic image an

ideal candidate for stereo or motion analysis. O

f It is frequently observed that highlights have a different color from the characteristic color of a ._ 1
- surface (which is related to shading). In this paper, we show how a simple, rather general mode! of ~—q
) reflection, called the “Dichromatic Reflection Model", can be used to determine intrinsic images of

the two types of reflection from a standard color image (i.e. red-green-blue separation). j'..-_i ,

L The analysis uses the properties of spectral projection, the process whereby color pixel values are .—~,
: determined from the spectral power distribution (SPD) of incoming light. Combining the Dichromatic _‘

Reflection Mode! with spectral projection results in a new model of pixet value distribution in R-G-B ;::\.‘;::

color space. The model predicts that pixel values from pixels on a single surface will lie on a f:x':~1

parallelogram in color space, and that the position of any pixel's color within that parallelogram yields .
the coefficients of the two types of reflection. N

',
-
"',
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A simple algorithm is presented which utilizes this model of pixel values to determine the desired
intrinsic images. The model and the algorithm are then extended to deal with diffuse illumination and R
shadows. Additional work for the future includes implementation of the algorithm and verification of

the model with real images.

For additional background information, the reader interested in radiometry in general is referred to ;;:_:.:
[9], [12], and [22]; while appearance measurement (gloss and color) is discussed in [10], [14], [16], '
and [35].

EEL R N BN R | R T
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1.1 Previous Work in Color Image Understanding

Color image understanding in the past has not been based on general models of reflection. Most of

the work has been the apblic.ation to three-dimensional color space of algorithms originally developed
and used for analyzing monochrome images. This includes primarily edge detection [21] and '
~—~ clustering [5, 18, 20, 23] (etc.). In such work, image regions or edges are identified by distances .
.' between pixel values in color space, without appeal to any model of color generation in the scene. ' C. ‘,-f
T
t‘_:.'. Color has also been used for object labelling based on known object colors or object colors :
measured in the image [19, 26, 31, 32, 34, 36). This approach, known as "spectral signature analysis" _____
i in remote sensing, uses the known reflection properties of materials of interest in a particular domain. -9
It depends on having few different types of materials in the scene, and having prior knowledge of their
. spectral reflectance. 1
o . . | -
» The properties of color space transformations have also been studied [17, 24], although no such - 4
transformations have sufficed to “solve” the image segmentation or labelling problems. o

The only previous work in utilizing general properties of reflected color has been in the form of
» simple statements such as "far-away outdoor objects look bluish”, "outdoor shadows are bluish"”, -4

and "natural colors tend to be desaturated” [19, 31]. In the psychological field, Rubin and Richards

X proposed a method for using color to determine changes in material across an image [27]; however,
- while the method is quite interesting, their assumptions appear to be restrictive. o ]

The approach described in this paper is significant because it is applicable to many common types
of materials, without prior knowledge about their colors, and because it is based on a very general '-:.j?.i'
model of reflection in the real world. .

'®
]
.,
A

1'.-:- Section 2.3 presents a discussion of previous work in reflectance models for computer graphics and 2
o image understanding. N
“
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2. Reflection and the Dichromatic Model

in this chapter, we present a briet account of the physics of reflection, followed by the Dichromatic
Reflection Model which captures certain aspects of the reflection process. The validity and
assumptions of the model are discussed, and it is compared with other reflection models used in
computer graphics and image understanding.

2.1 Physical Properties of Reflection

The methods of this paper deal with materials which are optically inhomogeneous, meaning that
light interacts both with a medium that comprises the bulk of the surface matter, and with particles of -;
a colorant that produce sca‘tering and coloration. Many common materials can be described this '
way, including most paints, varnishes, paper, ceramics (including porcelain), plastics, etc. Materials
that are homogeneous are not included in this discussion; thus metals and many crystals are not

amenable to the analysis presented herein. We will also limit this discussion to opaque surfaces, '.-;1*-'1
which transmit no light from one side to the other. S *
macroscopic perfect .

specular direction intertace reflection incident light ]

body reflection ».;:' -

AIR S

s
-

INTERFACE e

° ° ~——  MEDIUM -
) ® ) ® e
) ° ° ° \ COLORANT -

o e o ° s

Figure 2-1: Reflection of Light from an inhomogeneous Material Y

iR

Although we sometimes think of a visual surface as a plane, this is an approximation useful only at '»:::::1
the macroscopic level. To understand reflection from inhomogeneous materials, we will instead view Ij-?;.'j'
the surface as having a definite thickness (Figure 2-1) [14, 16, 35). .
=

S

When light strikes a surface, it must first pass through the interface between the air and the surface -_;-2-3
:?:;:j
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medium. Because the medium's index of refraction differs from that of the air, some of the light will be
reflected at the interface producing interface reflection as shown in figure 2-1. The direction of such
reflection will be in the "perfect specular direction” relative to the local surface normal, i.e. reflected
about the surface normal. Note that most materials are optically “rough”, with local surface normals
that differ from the macroscopic or reference surface normal. The local perfect specular direction is
therefore somewhat different from the macroscopic perfect specular direction, so that the interface
reflection will be somewhat scattered at the macroscopic level.

N
. . AAPERTE
P RDOP U SRS I EY S S

The amount of light reflected at the interface is governed by Fresnel's laws, which relate interface
reflectance to the angle of incidence (relative to the local surface normal), the index of refraction of
the material, and the polarization of the incoming illumination [15]. Interface reflectance is thus a
function of wavelength of light, since index of refraction generally depends on wavelength, but the
amount is typically constant to within a few percent across the visible spectrum; acrylic plastic, for

example, has an index of refraction of 1.485 at 400 nm (the blue end of the visible spectrum) and
1.505 at 700 nm (the red end) [3, 16, 35], praducing Fresnel reflection coefficients of 3.8% and 4.1% at

R .
Aokt b 4 o

the ends of the spectrum. Interface reflection is frequently assumed to be constant with respect to
wavelength because of the small magnitude difference, and is thus said to have the same color

(relative SPD) as the illuminant [7, 14, 16]. The effect of polarization is more severe, and interface ...,......
refleciien tends to be highly polarized, especially for large angles of incidence ("grazing angles”) -
[15, 35). ]
The light that penetrates through the interface passes through the medium, where it undergoes _‘A
- {

scattering from the colorant, and eventually is either transmitted through the material (if it is not
opaque), absorbec oy the colorant, or re-emitted through the same interface by which it entered,
producing body reflection as shown in figure 2-1. The geometric distribution of this body reflection is

sometimes assumed to be isotropic, i.e. independent of viewing direction, although some work is o -“";
under way to produce improved models of scattering [7, 10]. The color of the body reflection is o
generally different from that of the illumination, since interactions with colorant particles result in »
absorption with a probability dependent on wavelength. Body reflection is usually considered to be L
unpolarized. S

Real reflection tends to be more complex than described above. For example, real body reflection . ;_-l".;
is not isotropic (figure 2-2 shows curves of reflection as a function of viewing direction) [13}, and

some materials exhibit several interfaces producing interface reflection (Figure 2-3) [30]. However,
the explanation provided above is a very useful approximation.




o — = s e - — — - e - _. )
Goniophotmnenic curves of divecional rellecance as a tunction of
angle
Figurce 2-2: Body Reflection is Not Really Isotropic (from [13])
B This figur: chows soma clirves of reflection as a function of viewing angle for various materiala. In .
exch case, the direction of il aination is held constant as the distribution of refleclion is measured.
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2.1.1 An Aside on Terminology

‘“ ‘v".\"‘l S

—
s

—

This paper adopts the terms “interface"” and "body" reflection rather than the more common terms
"specular” and "diffuse” reflection. While the latter have gained some popularity in the literature of

appearance measurement and computer imaging (graphics and vision), they have some severe

o

problems which render them controversial. “Specular refiaction” may mean any of three things:
e interlace reflection -- the most common usage
e interface reflection in perfect specular direction at macroscopic level -- the usage most
common in gloss measurement
e interface reflection where surface is locally optically smooth -- the usage in scattering
theory and laser optics [2].

Similarly, the term "ditfuse refiection” means "retlected light scattered over a large solid angle”, and
thus may apply equally well to body and to interface reflection. The author, having experienced
numerous communication problems due to the use of the terms specular and diffuse, has ultimately
adopted the terminology used in this paper, which is sometimes found in the more technical optics

literature.

-

p.” - .;__..:“
- s
o)
. . F
: -~

Figure 2-4: Photometric Angles

The terminology used throughout this paper for describing reflectance geometry is illustrated in
figure 2-4, which defines the following angles [11}: -

3
e the angle of incidence, i -- the angle between the illumination direction I and the surface . .;'_'_Z-:
normal N :.;::.;
e the angle of emittance, e -- the angle between N and the viewing direction V o
o the phase angle, g -- the angle between fand V R
RN
IR
=)
A\:_\
e
o
-.::\‘
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i:-j e the off-specular angle, s -- the angle between V and the direction of (macroscopic)
- perfect specular reflection J.

We also use the standgrd symbol A to refer to the wavelength of light.

PR
L AN .

2.2 The Dichromatic Reflection Model

We now propose a simple mathematical model of reflectance, based on the above discussion,

- -
".i' T
0
. * ‘l

called the Dichromatic Reflection Model.

The Dichromatic Reflection Model states:
L(A' i. e, g) = Li (A- iv e, 9) + Lb (Ao iv e1g) . (2'1)
=m;(i,e,9)c; () + my(i,e,9) c, (N) (2-2) L
This model represents two statements about reflected light, as expressed by the two parts of the
equation:

1. Equation (2-1) says that the total radiance L of the reflected light is the sum of two -
independent parts: the radiance L, of the light reflected at the interface and the radiance A
L, of the light reflected from the surface body. i

2. Equation (2-2) says that each of these components of the light can be decomposed into o
two parts: —

a. composition -- a relative spectral power distribution ¢; or ¢,, which depends only on AN
wavelength but is independent of geometry, and s

b. magnitude -- a geometric scale factor m; or m, which depends only on geometry ,l:-;
and is independent of wavelength. S
Intuitively, the Dichromatic Reflectance Model says that there are two independent reflection
processes, and that each has a characteristic color whose magnitude, but not spectral distribution,

varies with the directions of illumination and view.

In the remainder of this chapter we will address the scope of this model and its validity; in the next -~
chapter we will see how this model may be exploited to determine intrinsic images of m; and m,,, the o
amount of interface and body reflection at each pixel. o

The Dichromatic Reflection Model assumes the following:
¢ The surface is an opaque, inhomogeneous medium with one significant interface.

¢ The surface is not optically active, i.e. it has no fluorescence or thin-film properties, and it
is uniformly colored, i.e. it has a uniform distribution of the colorant.

o Reflection from the surface is isotropic with respect to rotation about the surface normal.

AEARNCN AR e N T A E g T et AT AT AN R : :
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o There is no inter-reflection among surfaces.

¢ There is a single light source, i.e. no diffuse ("ambient”) illumination, and the relative
spectral power distribution S(A) of the illumination is constant across the scene.

The assumptions about the surface are typical for reflectance models and not too unrealistic. The
assumption of no inter-reflection is also typical, but unfortunately not realistic at all. Finally, the
assumption of no ambient light is not at all realistic, but will be relaxed (in fact, eliminated) in section
4.1 below.

Equally interesting is a list of assumptions not made by the model, which express the scope or
generality of the model:

e Imaging geometry -- the model makes no assumption that orthography or perspective is
being used. Either 'projection satisfies the model.

e Planar surface -- the model applies equally to curved and planar surfaces. It also applies
to textured surfaces, i.e. surfaces with macroscopic roughness (but see the note below
about analyzing intrinsic images).

e Specific reflectance model -- the model does not assume specific functions m;, ¢;, m,,, or
¢y in particular, there is no specific geometric model of highlights, no assumption that
the highlights have the same color as the illumination, and no assumption that the body
reflection is isotropic.

e Point light source -- the mode! applies equally well to a point light source, an extended
light source, or a light source infinitely far away.

e Uniform distribution of illumination -- the model does not assume that the amount of
ilumination is the same everywhere in the scene; only that the SPD is the same (see
above). This is important, since real (especially extended) light sources produce
nonuniform amounts of illumination in different areas of the scene.

It must be pointed out that any complexity of the forms mentioned above will cause great ditficulty in
analyzing the resulting intrinsic images of m, and m,. However, the Dichromatic Reflection Model will
make it possible to compute these intrinsic images regardless of such complexity.

in spite of the apparent simplicity of the Dichromatic Reflectance Model, it suffers from some flaws.
In practice, they ought to have only a minimal impact on the usefulness of the model.

e There is no obvious way to decide how to scale the magnitude functions m; and m,,
against the composition functions c; and ¢,,. Theretore, the resulting intrinsic images may
be only of relative, rather than absolute, reflection magnitudes. At least, it is reasonable
to require that 0 < m, m, < 1foralli,e, andg. '

o Interface reflection exhibits an interdependence between wavelength and geometry, as
expressed by Fresnel's equations. As stated above, this is a small effect; the author's
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estimate is an effect no greater than 2% in pixel value errors if the Dichromatic Mode! is
assumed. An error so large would only occur when i > 60° or so and the viewing e
direction is nearly the perfect specular direction; in most situations, therefore, the effect s
should be negligible. .

¢ Body reflection also exhibits an interdependence between wavelength and geometry. If
c,(A) is not constant, then the color of the light pacsing through the interface will differ
somewhat from the color of the illumination S(A). Since the total amount of light reflected
at the interface ( f e I 0 L[\..e.g] dg de) varies with the angle of incidence i, the color of
the light passing through the interface into the material body will also vary with the angle
of incidence. Thus, the color of the body reflection should vary with geometry. However,
since ¢; is generally nearly constant, this should also be a negligible effect in real images.

In summary, the Dichromatic Reflection Model is expressed in a simple equation which should be

approximately true over a very wide range of circumstances.

2.3 Previously Used Reflection Models

Previous models of reflection used in computer graphics and computer vision have proposed e

specific reflectance functions to predict the exact amount of reflection.

The most frequently cited model is that of Phong [25, 8], also applied in computer vision by Horn ;I;f:_Z:

[} :

| LG,e.g) =t nel cos"s + (1 - t)cos il

Here, t and n are parameters of the materiai, with t.representing the total amount of light refiected at --

the interface and n representing the clustering of the interface reflection about the perfect specular '“"

direction. The equation shown above is only a monochrome model, but is frequently applied for color : Z

images with the color of the interface reflection being white and the color (R-G-B values) of the body

reflection being a parameter of the material. Phong's model is easily seen to be an instantiation of the 2

Dichromatic Reflection Model in this paper as follows: ‘ =

m; =t ihd cos"s ) my = (1 - t)cosi

c;=1 Cp = surface parameter h

~ A later model was Blinn's [4), in which the interface reflection was characterized by a facet model of \

‘-E.*_: surface structure (from [33]) and Fresnel's equations were used for the color of the interface

?.‘ ' reflection. Cook and Torrance, in more recent work [6), used Beckmann's model of reflection from a
- rough surface [2]for the distribution interface reflection, and similarly applied Fresnel's equations for

the color of the interface reflection. In both cases, the body reflection was assumed to be isotropic,
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i.e. m, = cos i. These models of reflection are also examples of the Dichromatic Reflection Model,
with the exception of the use of Fresnel's equations to govern the color of the interface reflection
(usually a small effect, as noted above). ’

In computer vision, Shibata and Frei [29] used the following model to predict refliection in aerial

images: .
_ L(ie,g) =t,cos"s + t,cos™g + (1 - t, - ty)cosi
E::;f'_: Here, the first and last terms are similar to Phong's, and the middle term represents "backscattering"
i:_j : of light in the direction of illumination. The constants t,, t,, n, and m are parameters of the material
R being viewed. Extended to color images, this model would also be an instantiation of the Dichromatic
ﬂ Reflection Model, with the backscattering term added to m;.
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% 3. Pixel Values in Color Space . =

This chapter begins with a discussion ol spectral projection, the relationship between an SPD of
light and its color coordinates. When this process is applied to the Dichromatic Refiection Modet, a
new model for pixel values in color space is the resuit. A simple algorithm is presented for exploiu’ng . :,' -
this model to determine the intrinsic images of m, and m,,. o

3.1 Spectral Projection

Spectral projection is the process whereby pixel values are computed from the spectral power
distribution (SPD) of the measured light. The process in a monochrome camera is quite simple, with
the pixel value p being just a summation of the amount of light at each wavelength X(A), weighted by
the responsivity of the cainera to the various wavelengths, s(A):

p = [ X(\) s(\)dA .

The interval of summation is determined by s(A), which is non-zero over a bounded interval of

wavelengths A.

in a color camera, color filters are interposed between the incoming illumination and the camera. .
Each filter has a transmittance function 7(\), specilying the fraction of light transmitted at each -
wavelength; thus, spectral projection with a filter is specified by the above integral, with s()A) reiplaced
by r(A) s(A). Typically, three filters (red, green, and blue) are used with transmittances T 7o and 7,
resulting in a vector of three color values, C = [r, g, b]. If we let r(A) be the responsivity of the ""':
camera combined with the red filter, T(A) = 7,(A) s(A), (etc. for g and b), then the color value of any
SPD X(A) is given by:

c ol ™ X(A) r(A)dA
L X(A) g(A) dA
by X(A) b(A) dA <

Spectral projection is a linear transformation, as shown in [28]; in other words, Cox.oy = 4Gy +
bC, where a and b are scalars and X(A) and Y(A) are SPD's. To see this, consider first the red
component r,y . i it is easily seen that:

faxsby = 4 [aX(A) + BY(N)] TA) dA = a [ X(A) FA) A + b  Y(A) T(A) dA

'l"l'.'.‘ ;
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With similar equations for green and blue, we have the complete result. The linearity property of

SRR : .

L e AR N
T s Sy & L




spectral projection is important because it says that a mixture of two SPD's of light results in a sum of i
R the corresponding pixel values, taken in the same proportion. , -
b
3.2 The Dichromatic Model in Color Space ]
When the linear property of spectral projection is combined with the Dichromatic Reflection Model, J
a powertul new model of pixel color values resuits. e
First, consider a specific point on a surface. At that point, the geometry (angles i, e, and g) is - L:'-'_.'r
determined. and the magnitudes m; and m, may be considered as scalars. So, the Dichromatic ;,'-.-?.
Reflectance Model may be rewritten at a specific point as: '_,'A;Q
L(A) = mc(\) + m, cb(A) e

This defines the SPD of the light reflected from the surface. Now, applying the linearity of spectral -
projection, we have: -0
Q =mC +mG —y
where C, is the color (pixel value) measured, m; and m,, are the magnitudes of reflection at the point "
» quession, and C, and C, are the colors of the interface and body reflection of the material. :'.':;;l':
Consider the colors C, of a set of points on the same uniformly colored surface. Because the
e
geometry is different at each point, the scale factors m, and m, vary from point to point. However, the v
colors C, and C, of the interface and body reflection are the same at all points on the same surface, :\-‘_'.::;I
because they are simply the spectral projections of ¢;(A) and cb(J\) which do not vary with geometry. I;ﬁ;::l:
in other words, the pixel values are a linear combination of C; and C,, with the coefficients S
determined by m, and m,, at each point. o
o
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e Figure 3-2: Position Within Parallogram Determines Magnitudes g
E Recalling that we can assume 0 < m;, m, < 1 without loss of generality, we see that the pixel values L
e C, for a set of points on a single surface must lie within a parailelogram in color space., bounded by e
fjf. the colors C; and C, of the interface and body reflection of the surface (Figure 3-1). One corner of - N
' this parallelogram will be located at the origin, [r,g,b] = [0,0,0]. Further, within this paratlelogram, the -

o7

'i position of any color is determined by the values of m, and m,, at the corresponding point (Figure 3.2).

The Dichromatic Model in Color Space makes the following assumptions:

:;7j « Validity of the Dichromatic Reflection Mudel, i.e. all the assumptions made therein.

- o Prior segmentation of the image into groups of pixels known (or believed) to lie on a

- single surface. =

- R

o ¢ Pixel values returned by the camera are linearly related to the irradiance on the sensor ]

N plane, i.e. the camera is photometrically calibrated. If the camera is calibrated for S

’.*‘ monochrome response, it is not necessary to re-calibrate it with each color filter

- separately since the relative SPD of a filter’s transmittance is constant with respect to -
total intensity of illumination. j

= The model of pixel values does not assume:

= * Specific C; - it is not assumed that G, is achromatic (ie. r, = g; = b)), nor that it is the )
same for all surfaces in the image. '

. e
e Specific color responses -- no assumption is made about the color filters 7,(A), 7,(A), and -‘;-'_-::?
7,(A), except that they are linearly independent, nor is any assumption made a%out the Z;I-Z:ﬂ

D ) camera's spectral responsivity s(A), except that the relative spectral responsivity is T
constant with respect to the total amount of irradiance and constant across the sensor SHon
. plane. ::;-,:.:3
BN
-:’-::fi
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3.3 Analyzing Color Pixel Values

We can now present a simple algorithm for computing the intrinsic images of m; and m,, over a set of
pixels corresponding to a single surface in the image:

1. Histogram the pixel values in color space.

2. Fit a plane in color space to these points, with the restriction that the plane must pass
through the origin.

3. Fit a parallelogram on this plane to the points, with the restriction that one vertex must lie
at the origin. The sides of this parallelogram are C, and C,. If it is necessary to
distinguish one from the other, either geometric criteria may be used or the fact that C,

" probably lies close to the achromatic axis of the color space.

4. At each pixel, express its color as a linear combination of C, and C,. This can be
performed with a simple linear transtormation, i.e. a matrix multiplication of the [r, g, b]
color values by a 2x3 matrix (not 3x3 since the direction orthogonal to the plane in color
space is of no interest except as an error term).

5. The resulting values are the magnitudes m, and m,,

3.3.1 Assumptions of the Dichromatic Analysis Algorithm

i" In addition to the assumptions of the Dichromatic Model in Color Space, this algorithm depends
upon a number of additional assumptions for its effectiveness:

e C, and C,, must be linearly independent, i.e. the interface and body reflection must have
. different colors.

. e The noise in measuring pixel values must be small enough that plane-fitting and
- parallelogram-fitting can proceed.

« The distribution of pixel values within the parallelogram must not be pathological. In
general, the author expects that many points will lie close to the C,, axis, i.e. have m; close

. to zero, and the remaining points will lie close to the C, axis. These latter points may have
— pixel values "clipped" by the extent of the color cube itself, since highlights may be very
= bright and thus cause truncation of the measured pixel value at the maximum response of N
o the camera. ]
E it should also be noted that the Dichromatic Analysis Algorithm uses pixel colors to determine m, -
: and m,, but it does not interpret m; and m, in terms of the photometric angles i, e, and g. Thus, this :.ji-‘f',
algorithm does not tell how to analyze the values of m; and m,,. RN
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3.4 Summary

In this chapter, we have seen a mathematical &escription of spectral projection -- the process by
which an SPD of light is converted into color values. Spectral projection is a linear transformation, a
fact that can be applied to the Dichromatic Reflection Madel to produce a model of pixel values in
color space. The distribution of pixel values is expected to form a parallelogram, bounded by the
colors C, and G, of the interface and body refiection from the surface. The position of any color
within this parallelogram can be used to determine the coeificients m; and m,, at the corresponding
pixel in the image.

,.




RN

*

16

4. Applying the Dichromatic Analysis Algorithm

In this chapter we discuss the extension of the Dichromatic Reflection Model for dealing with diffuse
illumination, and some possible methods of analyzing the intrinsic images of m; and m,,.

4.1 Extending the Model for Diffuse lllumination

The Dichromatic Reflection Model as presented above depends on the assumption that the
illumination at any point comes from a single (point or extended) light source. It is more realistic to
model the illumination as consisting of a light source, plus "ambient" or "diffuse” light, of lower
intensity, coming from all directions in equal amounts, and possibly with a different SPD than the
small source. This model is a better approximation of daylight, which contains light from a point
source (the yellowish sun) and light from a hemispbere (the bluish sky), and of light in a room, which
comes from light fixtures and from inter-reflections off walls and otheér objects. All the previously
mentioned models of reflection in computer graphics presume some sort of diffuse illumination,
although the assumption made here (diffuse illumination from all directions equally) is admittedly
highly idealized.

pixel colors

Cb

color of pixels in shadow -

\
/R

Figure 4-1: Color Space Parallelogram With Diffuse lllumination

The light reflected by diffuse ilumination contains a part due to interface reflection and a part due to
body reflection. By assuming that this light is incident from and reflected into all directions equally, it

can be modelled by adding a single term, L,(A), to the Dichromatic Reflection Model:
LA/ e,9) = m(i,e,9)c;(A) + my(i,e,g) cy (A) + L(A)

In color space, the model becomes:
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CL=mC+myCy+Cp
where C, is the color of the light reflected from diffuse illumination L,(A). Since L,(A) does not vary Tiifi
with geometry, the effect of this change is to translate the parallelogram of pixel colors for a single

= l

surface away from the origin by the vector C,, as seen in figure 4-1.

LR g SR I

The Dichromatic Analysis Algorithm can still be applied with this change, but note that the plane-
. fitting and parallelogram-fitting operations specified in the algonthm will be less constrained and Q_.’ B
' therefore more error-prone. If the relative SPD of the diffuse illumination is the same as that of the
small source, then C, is a linear combination of C, and C, [6); in such a case the p/ane containing the
points should pass through the color space origin although the parallelogram will not.

Itis interesting to note that a point whose color lies at exactly C, = C, has m;, = m, = 0, and might
theretore be suspected of lying within a shadow. This is a far more precise description of colors
within shadows than statements of the form "shadows tend to be bluish”, which have been seen in

previous work in image understanding. In fact, since for different surfaces C, is very likely to differ, it
may be pcssible to associate shaded parts of surfaces with illuminated portions, by constructing c.

for each adjacent illuminated area and finding which one matches best with the color of the pixels in
the shaded area. Unfortunately, since pixel values in shaded areas of an image tend to be poorly
_i measured by current digitizing cameras, this kind of analysis may prove to be unreliable.

- The description presented here is intended to mode! diffuse illumination; however, it will be a poor
- substitute for a detailed model of inter-reflection when surfaces are close to each other.

The author continues to call the above equation a "Dichromatic Reflection Model” (rather than a
trichromatic model) because the essence of the model is that reflection occurs from two places in a
surface: the interface and the surface body.

g
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4.2 Analysis of the Intrinsic Reflection Images

The potential utility of the intrinsic images of m, and m,, stems from two facts:

L)
e,
P

e Both m, and m,, have simpler geometric properties than does intensity in a monochrome
image, which represents a weighted sum of the two. -=

Stk

o m,, representing diffusely distributed light, is relatively insensitive to changes in

viewpoint from one image to the next.
’-'.-::

- Here are some possible methods for exploiting these properties of the intrinsic images of m; and m,;; =
::'. 1. In stereo or motion analysis, image matching using m,, might be more reliable because of ‘_:I-_::I
: ':
]
]
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the elimination of interface reflection, whose position in the image is highly viewpoint-
dependent.

2. If a specilic reflectance model such as Phong's is assumed, then the two values m; and
m,, provide two constraints on the surface normal at any point. For example, using
Phong's model, the angle s can be calculated from m, and the angle i can be calculated
from m,. With such constraints, unique surface normais can be established from a color
image. (In practice, this kind of analysis would be limited by the applicability of such
reflectance models and by the distribution of points on the parallelogram in color space.)

3. If, as above, a specific reflectance madel is assumed but the parameters {t, n in Phong's

model) are not known, it may be possible to determine or estimate these from the image.
At a point with a known orientation, the coefficients m; and m, can be determined by
color analysis; using these, the surface parameters may be calculated. This might form
the basis for a technique of looking at parts of a surface (say, the spots with pronounced
highlights) to estimate the nature of the reflectance properties of the surface, then using
this estimated reflectance model to analyze the rest of the surtace in detail.

4. Using differentials, since the photometric angles j, e, and g are functions of x and y in the

image, we can relate the differentials of the intrinsic image of m; to the geometric
properties of m, and the imaging geometry by:

_ . di/dx di/dy

(dm,/3x am;/3y] = [dm,/di dm,/de dm,/dg] de/dx deldy

9g/dx dg/dy

This equation tells how the intrinsic image and a reflectance model yield constraints on
the imaging geometry using first derivatives.
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5. Conclusions

In this paper, we have seen the development of a fairly simple algorithm for determining intrinsic i
images of reflection from a color image. The presentation inéluded a fairly general reflection model e
based on a physical description of the reflection process, a model of pixel value distribution based on '
the properties of spectral projection, and an algorithm for analyzing color values in an image. This
paper also presented a discussion of some related issues such as diffuse illumination, image
segmentation, and analysis of the resulting intrinsic images. These intrinsic images promise to be
useful for a variety of image understanding tasks, including stereo matching, geometric surface

analysis, and analysis of surface reflectance parameters.

This work represents a quantum advance over previous efforts in color image understanding,
because it presents a quantitative theory based on the physics of the real world. In this respect, it
follows an increasingly important paradigm of three-dimensional image understanding research:

1. Describe a physical (geometric or optical) phenomenon in the scene. -
2. Develop a mathematical statement of this scene property.

3. Apply an imaging model to this statement, to produce a new mathematical statement
relating image properties to scene properties.

4. Develop an algorithm to analyze the scene properties using the above relationship.

As is frequently the case, the complex intermediate mathematics are used in this paper only to derive . -
the algorithm; they are not necessarily directly incorporated in any actual program. —

This paper also displays one of the dilemmas of current work in 3D computer vision: we frequently o
see simple theories and algorithms developed tc analyze isolated phenomena such as shadows and
highlights, but we rarely see them appiied to real images. While some readers may feel that this is 2
because the theories are too complex, the opposite is a more tenable point of view: that such
theories fail in practice because they are too simple, i.e. their assumptions are too restrictive. In order

to apply them to real images, it is first necessary to relax as many assumptions as possible, as was :f::-
done here in discussing diffuse illumination and image segmentation. This produces the striking
paradox of complex theories whose validity should be tested by applying them to real images; but they
cannot be applied to real images until they are made yet more complex| :

We have yet to see how researchers in three-dimensional image understanding will resolve this
problem, but the utility of such research depends upon its sofution. The current work may help by
demonstrating a theory which depends upon relatively few special assumptions, and by providing
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ol "simpler” intrinsic images useful for estimating surface and illumination parameters from examination
e of the images themselves.

Further efforts in developing this work will include implementation (when a calibrated camera is

-
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obtained), pursuing the ideas for intrinsic image analysis suggested above, and developing the theory

g !,
*

—
]

that will ultimately allow analysis of nonuniform illumination, extended light sources, and perhaps
inter-reflection among surfaces. In addition, a segmentation scheme based on the Dichromatic
Reflection Model might be irivestigated.

5.1 Acknowledgements

The author would like to thank Fred Bilimeyer, of Rensselaer Polytechnic Institute, and David
MacAdam, of the Optics Ihst_itute at the University of Rochester, for their comments and suggestions.
Takeo Kanade at Carnegie-Mellon University provided much guidance for this work, and Marty
Herman and Chris Brown provided comments on the paper. Frank O'Donnell at Rensselaer
Polytechnic Institute provided a wealth of papers on gloss measurement from which figures 2-2 and
2-3 were drawn. Those figures are reproduced by permission from their respective publishers.

.
PR WP L PR

R N
e e N

{

- .
A R T T B e e O R St R T ST S A R N L OIP N IC L  PL LR O RS A TC RS L S URN
B S o R O R ) AT R




A L A T T e e e W L e T R S L Ty,
X NS Pl
B

-

-

. N B
PR

A
IR St Aoy P8

S

o

,.
) e SN NS
'-l".'n.‘" Betw 20

i AR A

6. Bibliography

(1

(2

(3l

(4]

1]

* (6]

71

(el

[9]

[10]

(1]

02)

LA AR A ATy VRTINS TN
L 4 L% A o A uew Wy

Barrow, H. G. and Tenenbaum, J. M.

Recovering Intrinsic Scene Characteristics from Images.

In Hanson, A. R. and Riseman, E. M. (editor), Computer Vision Systems, pages 3-26.
Academic Press, New York, 1978.

Beckmann, P. and Spizzichino, A.

The Scattering of Electromagnetic Waves from Rough Surfaces.
MacMillan, 1963.

Pages 1-33, 70-98.

Biflmeyer, Fred W. Jr.
Private communication.

Blinn, J.F.

Moadels of Light Reflection for Computer Synthesized Pictures.
Computer Graphics 11(2):192-198, 1977.

SIGGRAPH '77.

Coleman, G. B. and Andrews, H. C.
image Segmentation by Clustering.
Proc. IEEE 67(5):773-785, May, 1979.

Cook, R. L. and Torrance, K. E.

A Reflectance Model for Computer Graphics.
Computer Graphics 15(3):307-316, August, 1981.
SIGGRAPH '81.

Egan, W. G. and Hilgen;an. T W.
Optical Properties of Inhomogeneous Material.
Academic Press, New York, 1979,

Foley, J. D. and Van Dam, A.
Fundamentals of Interactive Computer Graphics.
Addison-Wesley, Reading, Mass., 1983.

Grum, F. and Becherer, R. J.
Optical Radiation Measurements, Volume 1: Radiometry.
Academic Press, New York, 1979,

Grum, F. and Bartleson, C. J., editors.

Optical Radiation Measurements, Volume 2: Colorimetry.
Academic Press, New York, 1980,

Chapter 7, "Colorant Formulation and Shading”, by E. Allen.

Horn, B. K. P.
Understanding Image Intensities.
Artificial Intelligence 8:201-231, 1977,

Horn, B. K. P. and Sjoberg, R. W.
Calculating the Reflectance Map.
Applied Optics 18:1770-1779, 1979.

u.'."'

oA

%% PRI I Y S P N T N PRI T TS R TR
. o WA AN

..............



1)
[14]
(18]
[e]
1)
el
1o}
0]
f21]
[22]

(23]

[24)

(25]

[26)

A IO RO IR

22

Hunter, R. S.
High Gloss Measurements.

Official Digest of the Federation of Societies for Pajnt Technology 36:348-356, April, 1964.

Hunter,R.S.
The Measurement of Appearance.
J. Wiley ancd Sons, New York, 1975.

Jenkins, F. A. and White, H. E.
Fundamentals of Optics.
McGraw-Hill, New York, 1976.

Judd, D. B. and Wyszecki, G.
Color in Business, Science and Industry.
J. Wiley and Sons, New York, 1975,

Kender, J. R.
Instabilities in Color Transformations.
In PRIP-77, pages 266-274. |IEEE Computer Society, Troy NY, June, 1977,

Levine, M. D. and Shaheen, S. 1.
A Modular Computer Vision System for Picture Segmentation and Interpretation, Part .
In PRIP-79, pages 523-533. IEEE Computer Society, Chicago, lll., August, 1979.

Nagao, M., Matsuyama, T., and lkeda, Y.
Region Extraction and Shape Analysis in Aerial Photographs.
Computer Graphics and Image Processing 10:195-223, 1979.

Nagin, P. A., Hanson, A. R., and Riseman, E. M.
Region Extraction and Description Through Planning.
COINS TR 77-8, U. Mass., May, 1977.

Nevatia, R.
A Color Edge Detector and Its Use in Scene Segmentation.
IEEE Trans. Systems, Man, and Cybernetics TSMC-7(11):820-826, November, 1977.

Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, |. W., and Limperis, T.
Geometrical Considerations and Nomencilature for Reflectance.
NBS Monograph 160, National Bureau of Standards, October, 1977.

Ohlander, R.
Analysis of Natural Scenes.
PhD thesis, Carnegie-Mellon Univ. Computer Science Dapt., 1975.

Ohta, V., Kanade, T., and Sakai, T.
Color Information for Region Segmentation.
Computer Graphics and Image Processing 13:222-241, 1980.

Phong, Bui Tuong.
Humination for Computer Generated Pictures.
Communications of the ACM 18:311-317, 1975.

Rubin, S.
The ARGOS Image Understanding System.
PhD thesis, Carnegie-Mellon Univ. Computer Science Dept., 1978.

e 8% 1 8% 8 e e, o .'\J‘ Y

X 00 8% ot 2% W% e EREAN
A OADA A SABASN LRI

ALY A

B N AR RNy




L R R L L IR I Al

e
Y
-
"
-
.

[27] Rubin, J. M. and Richards, W. A.
Color Vision and Image Intensities: When are Changes Material?. R
Al Memo 631, MIT, May, 1981. _ RS

[28] Shaler, S. A, _
Describing Light Mixtures Through Linear Algebra.

J. Optical Soc. Am. 72(2):299-300, February, 1982. T
[29] Shibata, T., Frei, W., and Sutton, M ,___
Digital Correction of Solar Illummatuon and Viewing Angle Artifacts in Remotely Sensed
Images.
In Proc. 7th Symposium on Machine Processing of Remotely Sensed Data, pages 169-177.
1981.
[30) Simpson, L. A. —
Measuring Gloss and Factors that Affect It. .

Technical Report, BTP Tioxide Limited, Stockton-on-Tees, England, 1981.

[31] Sloan, K. -
World Model Driven Recognition of Natural Scenes. wi
PhD thesis, U. Penna. Moore School of Electrical Engineering, June, 1977, P

[32) Tenenbaum, J. M. and Weyl, S.
A Region-Analysis Subsystem for Interactive Scene Analysis.
In Proc. 4th IJCAI, pages 682-687. September, 1975.

[33] Torrance, K. E. and Sparrow, E. M. S
Theory for Off-Specular Reflecticn from Roughened Surfaces. —
J. Optical Soc. Am. 57:1105-1114, September, 1967. .

{34] Weymouth, T. E., Griffith, J. S., Hanson, A. R., and Riseman, E. M.
Rule Based Strategies for image Interpretation. o

In Proc. NCAI-83, pages 429-532. AAAI, August, 1983. s

[

[35] Williamson, S. J. and Cummins, H. Z.
Light and Color in Nature and Art.
J. Wiley and Sons, New York, 1983. e

[36] Young,I.T.
The Classification of White Blood Cells.
IEEE Trans. Biomedical Engineering BME-19(4):291-298, July, 1972.

A .".b ----- RN U AT AT 3 I AT A R L TR L eta ‘,. .. )
't- e e T T e g e e i et e - e e e A




Mty '*_v';'v"'.v'f RCA A OGN .(_‘7_..-_.- }_‘i“._- v
- e AT AOAILEIL A R A . - )

4-85

l-’f.n

J_f '.:IL'._:'




